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For many intellectual tasks, the people with the least skill
overestimate themselves the most, a pattern popularly known
as the Dunning–Kruger effect (DKE). The dominant account
of this effect depends on the idea that assessing the quality of
one’s performance (metacognition) requires the same mental
resources as task performance itself (cognition). Unskilled
people are said to suffer a dual burden: they lack the cognitive
resources to perform well, and this deprives them of
metacognitive insight into their failings. In this Registered
Report, we applied recently developed methods for the
measurement of metacognition to a matrix reasoning task,
to test the dual-burden account. Metacognitive sensitivity
(information exploited by metacognition) tracked performance
closely, so less information was exploited by the metacognitive
judgements of poor performers; but metacognitive efficiency
(quality of metacognitive processing itself ) was unrelated to
performance. Metacognitive bias (overall tendency towards
high or low confidence) was positively associated with
performance, so poor performers were appropriately less
confident—not more confident—than good performers.
Crucially, these metacognitive factors did not cause the DKE
pattern, which was driven overwhelmingly by performance
scores. These results refute the dual-burden account and
suggest that the classic DKE is a statistical regression artefact
that tells us nothing much about metacognition.

1. Introduction
1.1. Skill and self-knowledge
The arrogant blowhard, blind to his own incompetence, is a familiar
stereotype throughout human history. This salient aberration of
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self-knowledge has been lamented by eminent thinkers, from Confucius1 to Darwin.2 More recently, it has
surfaced within psychological science as a marker of the Dunning–Kruger effect (DKE): thosewith the least
skill in a given domain overestimate themselves themost. This pattern is found for diverse intellectual tasks,
regardless of whether people rate themselves in absolute terms or relative to their peers (see [1], for a
review). For instance, following a test of logical reasoning, participants in the bottom quartile,
performing around the 12th percentile, ranked themselves on average at the 68th percentile; by contrast,
top quartile participants underestimated their true standing, though less severely [2]. In popular culture,
the DKE has morphed into the modern trope that stupid people are too stupid to know they are stupid.3

This trope simplifies, and yet captures the essence of Kruger & Dunning’s [2] account of their data.
They proposed that, in many intellectual tasks, assessing the quality of one’s performance
(metacognition) requires the same mental resources as task performance itself (cognition). An example
would be that the knowledge needed to judge the grammaticality of a sentence is exactly that which
would be needed to compose similar sentences. Given this proposed overlap of cognitive and
metacognitive resources, unskilled people are said to suffer a dual burden: they lack the cognitive
resources to perform well, and this simultaneously deprives them of insight into their failings, so that
they think themselves to be more competent than they really are. Conversely, skilled people have the
resources both to perform well and to evaluate their performance. According to the dual-burden
account, these variations in task performance and metacognition, both linked to underlying task skill,
drive the negative correlation between task skill and estimation error that defines the DKE.

However, the explanatory role of metacognitive insight has been subject to scepticism [3–7]. One
reason for this is that typical demonstrations of the DKE are prone to statistical artefacts, which might
provide a simpler account of the pattern. The most obvious artefact is regression to the mean, which
can arise if the objective measure of performance used to rank participant skill also enters into the
calculation of estimation error, as in the original studies of Kruger & Dunning [2]. Random factors
that bias the measure of performance (up or down) will tend to bias estimation error in the opposite
direction when subtracted from the self-estimate, promoting overestimation among the poorest
performers, and underestimation among the best. Regression to the mean certainly contributes to the
classic DKE, because the DKE is reduced in strength when steps are taken to control for this artefact
[4–6,8–11]. The most effective control is to use independent subsets of trials to index performance and
to calculate estimation error.

But, even if regression to the mean is controlled for, the DKE could still be an artefact, related to
limitations of the typical methods of studying self-estimation, by asking participants for global
estimates of their percentile rank or absolute score. An individual who reports their performance
accurately might indeed have good insight, or they might just have made a lucky guess. Smaller
estimation errors do not necessarily imply greater insight, and one-shot global reports cannot provide
adequate measures of metacognition [12]. On this basis, several authors have argued that the DKE
implies nothing in particular about metacognitive differences between skilled and unskilled people,
but that people in general are poor at giving global estimates of their ability [4,6]. Such estimates are
imprecise (noisy), and tend to regress towards some common default. If that default guess is
optimistic, and there is much evidence that people in general rate themselves above average [13–15],
then it will be a gross overestimate for an unskilled person, and closer to the truth for a more-skilled
person. Under this noise-plus-bias account, the DKE is attributable to uncertain self-estimation in the
context of performance differences between more- and less-skilled people, and a general tendency for
people to rate themselves as better than average.

Meaningful measures ofmetacognition require amore detailed, psychophysical approach, relating trial-
by-trial variations in self-estimation to objective performance [12]. We implemented such an analysis for
simple movement and memory tasks: pointing at a dot or recalling its position after a delay [11]. To
eliminate regression to the mean, we measured task skill during a preliminary block of trials,
independent of our measures of task performance and metacognition. First, we replicated the classic
DKE pattern, showing that it generalizes beyond the intellectual domain to these more basic movement
and memory tasks. Second, our psychophysical assessment of metacognition suggested that poor
performers did indeed have poorer metacognitive insight, consistent with the dual-burden account.
Third, we used a path analysis approach to model the dual-burden account, assessing the extent to
1‘Real knowledge is to know the extent of one’s ignorance.’
2‘Ignorance more frequently begets confidence than does knowledge.’
3See, for example, https://www.youtube.com/watch?v=wvVPdyYeaQU.

https://www.youtube.com/watch?v=wvVPdyYeaQU
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which the negative relationship between task skill and estimation error (i.e. the DKE pattern) was driven by
variations in task performance andmetacognitive insight. Formovement andmemory tasks alike,we found
only a weak, non-significant net contribution of metacognitive factors, with the DKE driven instead by task
performance. Less-skilled participants performed more poorly and had poor metacognitive insight, but it
was the poor performance and not the lack of insight that caused their apparent overestimation.

This implies that the dual-burden account of the DKE may be correct in its general premise that
unskilled people lack metacognitive insight, but mistaken in its assumption that this causes their
propensity for inflated self-estimation. However, these conclusions were based on an analysis of
movement and memory tasks, so cannot necessarily be generalized to the higher-level intellectual
tasks, such as logical reasoning, for which the DKE was originally described [2]. A proper test of the
dual-burden account requires an analysis of metacognition in a higher-level task more representative
of this literature. In proposing such an analysis, we can take advantage of a powerful theoretical
framework developed recently for the modelling and measurement of metacognition.

1.2. Measuring metacognition
Fleming & Daw [16] have argued that metacognition is best explained via a second-order computational
model, in which metacognitive processing is coupled with, but distinct from, first-order processes
underpinning cognitive performance. They apply methods developed by Maniscalco & Lau [17,18], for
measuring the information accessed by metacognition (metacognitive sensitivity), and the quality of
metacognitive processing itself (metacognitive efficiency). The general analysis strategy is an extension
of classical signal detection theory [19].

Consider first a simple cognitive (perceptual) task in which a participant must discriminate between
stimulus classes. Each is assumed to generate neural evidence, normally distributed with equal variance,
along an internal decision axis. The participant’s sensitivity to the difference between stimulus classes
is defined by the distance between the two distributions (in units of standard deviation); but
the discrimination responses they make are also shaped by their criterion or bias (i.e. where on the
decision axis they set their criterion for switching the response between stimulus classes). Signal
detection theory provides an elegant set of methods to characterize sensitivity (d0) and bias separately.
In this context, d0 estimates the participant’s sensitivity for the first-order cognitive discrimination.

But if we are also interested in metacognition, then we can ask the participant to make an additional
response on each trial, to rate how confident they are in their cognitive judgement. This (second-order)
response is a metacognitive discrimination: the participant is reporting on the quality of their own
cognitive processing. These confidence ratings can be used to estimate metacognitive sensitivity.
Although computationally complex, the analysis is reasonably straightforward in conceptual terms
[12,16–18]. If the participant is sensitive to the quality of the information on which their cognitive
responses are based, then they should give higher confidence ratings for accurate than for inaccurate
responses. To estimate metacognitive sensitivity, we pragmatically assume that the participant is a
metacognitively ideal observer, whose confidence ratings are made with perfect insight into the
information on which their cognitive responses are based, and we estimate what their first-order d0

would be if that were true. This value, known as meta-d0, or metacognitive sensitivity, indexes the
information accessed by metacognition, expressed in the same units as first-order d0.

If the participant really is a metacognitively ideal observer, then meta-d0 should be equal to d0, because
metacognitive and cognitive responses will be based on identical information. Typically, meta-d0 may be
lower than d0, because it is based on a subset of the first-order information, or on a noisy or decayed
transformation of it [17].4 The extent to which meta-d0 approaches the ideal value set by d0 indexes
how fully the first-order information has been accessed by metacognitive processes, thus how
informationally efficient metacognitive processing is. This furnishes a second measure of
metacognition, metacognitive efficiency, usually given by the proportional measure meta-d0/d0. While
metacognitive sensitivity indexes the evidence accessed by metacognitive processes, and is limited by
first-order cognitive sensitivity, metacognitive efficiency indexes the quality of metacognitive
processing itself. Metacognitive sensitivity would generally be expected to track cognitive performance
more or less closely, but it is an open question how metacognitive efficiency will vary with cognitive
ability for any given task.
4However, a second-order metacognitive model also allows that, under some circumstances, meta-d0 may be higher than d0, if
metacognition can access additional information not available to cognition, or is influenced by higher-level beliefs about the
likelihood of success or failure (see [16]).



Table 1. Summary of dependent measures for investigating skill and self-knowledge in a matrix reasoning task. (a) Dependent
measures typical of the standard framework within which the DKE has been studied and (b) further cognitive and metacognitive
measures to be used in the present study.

dependent
measure block conceptual role of measure method of calculation

(a) standard DKE measures

cognitive skill baseline index of task ability percentage correct in baseline block of matrix

reasoning task (with performance between chance

and ceiling remapped to a 0–100 scale)

cognitive

performance

test index of task performance percentage correct in test block of matrix reasoning

task (with performance between chance and ceiling

remapped to a 0–100 scale)

relative

estimation error

test over- or under-estimation of own

rank position relative to others

actual percentile rank subtracted from estimated

percentile rank

absolute

estimation error

test over- or under-estimation of own

performance in absolute terms

actual cognitive performance score subtracted from

estimated score

(b) further cognitive and metacognitive measures

cognitive

sensitivity

test information content of cognitive

responses in matrix reasoning task

d0 from signal detection theoretic analysis of

cognitive responses

metacognitive

sensitivity

test information exploited by

metacognitive confidence

judgements

meta-d0 from signal detection theoretic analysis of

metacognitive ratings

metacognitive

efficiency

test quality of metacognitive processing meta-d0 expressed as a proportion of d0, indexing
the proportion of the information content of

cognition that is exploited by metacognition

metacognitive

bias

test overall tendency towards high or

low confidence, independent of

performance

unweighted mean confidence rating, across correct

and incorrect responses
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One much simpler metacognitive measure may also be relevant to consider. When metacognition is
investigated via confidence ratings, then the (unweighted) average confidence across correct and
incorrect judgements provides an index of the person’s overall bias towards high or low confidence,
independent of first-order response accuracy (e.g. [12,17,18,20]). We can potentially use this
metacognitive bias measure to investigate differences between individuals in the use of the confidence
scale. Table 1 gives an overview of the dependent measures for this study, including the cognitive and
metacognitive variables reviewed in this section.

1.3. Metacognition in the Dunning–Kruger effect
The dual-burden account proposes that the DKE arises specifically for tasks in which metacognitive
insight depends on exactly the same information as first-order cognition [1,2]. In Fleming and Daw’s
terminology, this would be a first-order model of metacognition, which is a special case of the more
general second-order model. For this special case, metacognitive performance is based on the same
information as cognitive performance, so cognition and metacognition would be tightly coupled.
Empirically, this overlap of information for cognition and metacognition predicts a strong positive
relationship between cognitive sensitivity (d0) and metacognitive sensitivity (meta-d0).

It should be noted that, within the metacognitive framework discussed, the same positive relationship
would be expected simply from the fact that metacognitive sensitivity is constrained by the information
available to cognition. As such, a positive relationship between these variables is rather likely, but
relatively uninteresting in psychological terms, because differences in metacognitive sensitivity
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dependent on task performance do not in themselves imply any differences in the quality of
metacognitive processing between people with high and low ability for a task. However, as noted by
Fleming & Lau [12], it is also possible that there are real differences in the quality of metacognitive
processing between high- and low-skill participants, which would be reflected in the measure of
metacognitive efficiency. If participants of lower ability were found to have lower metacognitive
efficiency, rather than just lower metacognitive sensitivity, this would support a psychologically
stronger, more interesting reading of the dual-burden hypothesis.

Finally, we can potentially use the metacognitive bias variable to investigate the idea that poor
performers are overconfident about their cognitive judgements. This is not a critical part of the dual-
burden account, but it is a characterization of poor performers that is prevalent within the same
literature (e.g. [1,2,5,21,22]). A negative relationship between cognitive sensitivity and metacognitive
bias would support this characterization.

1.4. The present study
In this study, we apply a computational model of metacognition to a matrix reasoning task, epitomizing
the kind of intellectual skill for which the DKE was first described [2]. The design will allow us to more
fully evaluate the assumptions of the dual-burden account, in terms of the relationship between cognitive
ability and different dimensions of metacognitive insight, and to quantify the relative influences of
cognitive and metacognitive factors in driving the famous DKE pattern.
1727
2. Methods
2.1. Participants
Participants were current university students or alumni, aged from 18 to 50, otherwise unselected for age,
sex, nationality or academic discipline.5 We had a pre-registered target of 150 valid datasets, as guided by
a priori power considerations (see §2.6). In practice, we recruited 159 participants and obtained 151 valid
datasets (see §3.1).

2.2. Stimuli
The primary task was a matrix reasoning task, adapted from an open-access matrix reasoning item bank
[23]. Each puzzle was based on a 3 × 3 matrix of shapes, with the lower right element missing, and the
participant was required to identify the missing element from among candidate solutions. To do this
successfully, participants must deduce relationships between the shapes of the matrix, which requires
them to take account of one or more stimulus dimensions (shape, colour, size, relative position). In the
original version of this task, four candidate solutions were presented per puzzle, with a time limit of
30 s to respond (for details, see [23]). In our adapted version, only two candidate solutions were
presented, one correct and one incorrect, so that each puzzle was a two-alternative forced-choice,
suitable for a signal detection theoretic analysis (figure 1).

The open-access matrix reasoning item bank (https://osf.io/g96f4/) comprises three sets of 80
puzzles. These three puzzle sets are exactly parallel, but differ in the particular shapes used. To adapt
these materials for our purposes, we first characterized the properties in the puzzles in one parallel
set (set 1), coding the number of stimulus dimensions required to solve each puzzle, and rating the
difficulty of each on a 1–4 scale.6 Thirty-one puzzles were classed as both two-dimensional and of
intermediate difficulty (rating 2), and we selected the first 30 of these to define a basic puzzle set for
our task. We then designated 10 of the puzzles from this basic set of 30, specifically every third
puzzle (3, 6, 9,…, 30), as baseline puzzles, with the other 20 being designated as test puzzles. This
distinction relates to the role that these puzzle items will play in the analysis of the DKE. Baseline
5The original protocol stated that all participants would be current students of the University of Edinburgh, aged 18–40. The difficulty
of recruitment during the COVID-19 pandemic meant
that, in order to achieve sufficient numbers, we relaxed these criteria slightly, recruiting current and previous students of any
university, below the age of 50. This protocol deviation was approved retrospectively on 25 July 2022.
6An objective index of difficulty was publicly available for a group of 106 adults performing the original task [23], although only 38 of
the puzzles had been completed by 20 or more of these participants (range 20–106). For these 38 puzzles, the observed mean accuracy
correlated with our subjective difficulty rating at r =−0.77, giving us confidence in the validity of our difficulty ratings for the full set.

https://osf.io/g96f4/


(a)

(d) (e)

(b) (c)
very certain

very uncertain

Out of 100 Edinburgh University students
performing this task,

how do you think you would rank,
if 1 is poorest and 100 is best?

If a person was guessing randomly at this
task, they would be right about half the time.

If random guessing is represented by zero
on the scale, and perfect performance is 100,

then how do you think you did?<click the scale below to answer>

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Figure 1. Trial events: (a) a 3 × 3 matrix is presented, with one element missing, and two candidate solutions, and the participant
must click on the correct solution; (b) a digit countdown appears in the last 5 s of the 17 s display period; (c) the first-order
response is followed by a confidence rating; (d ) following the main task, participants make a global self-estimate of relative
performance and (e) participants then make a global self-estimate of absolute performance.
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puzzles will be used to characterize cognitive skill, while test puzzles will be used for the separate
calculation of task performance, estimation error and metacognitive measures, allowing us to
minimize regression to the mean (see §1.1 for discussion of this artefact).

Next, in order to boost the number of items, we transformed selected puzzles from the original set, to
produce novel puzzles, which preserved the essential logical demands of the original (see electronic
supplementary material, section S2 for details). We transformed six of the baseline puzzles, and 10 of
the test puzzles in this way, bringing the number of baseline puzzles up to 16, and the number of test
puzzles up to 30, for puzzle set 1. The equivalent puzzles (and transformations) were then added
from puzzle sets 2 and 3, to make a grand total of 48 baseline puzzles and 90 test puzzles, relatively
homogeneous for dimensionality and difficulty.
2.3 Procedure
Testing took place in a quiet, private room; all data were collected under an anonymous study code, and
the participant’s responses were not directly observed. As testing took place between 28 January 2022
and 17 August 2022, during the COVID-19 pandemic, the experimenter and participants (except
where exempt) wore facemasks for respiratory hygiene.7

The trial events are illustrated in figure 1. The participant sees a 3 × 3 matrix of shapes, with the lower
right element missing, and two candidate solutions, one correct and one incorrect, below the matrix. The
participant must click on the solution that they think is correct. The matrix remains on-screen until a
response is made, or for a maximum of 17 s, with a digit countdown visible for the last 5 s. If the
time limit is reached, the matrix disappears, and only the candidate solutions remain on screen until
the participant responds. In the baseline (and familiarization) phase, the next trial begins after a 1 s
delay. In the test phase, before proceeding to the next trial, the participant is required to rate their
confidence in the preceding response, by clicking one of a column of four numbered buttons, where 1
is labelled ‘very uncertain’ and 4 ‘very certain’.
7The use of facemasks was not part of the original Stage 1 protocol, which received in-principle acceptance prior to the COVID-19
pandemic. This protocol amendment was approved retrospectively on 25 July 2022.
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Each participant first completes a short familiarization phase of six very easy puzzles, which are not
drawn from the experimental set, followed by a baseline phase of 48 trials, divided into three blocks of 16
trials, and then a test phase of 90 trials (with confidence ratings), divided into five blocks of 18 trials.
Between each block, a dialogue box pops up with a ‘continue’ button, allowing the participant to
pause until they are ready. An instruction screen before the practice and baselines phases informs the
participant that, You will be shown a series of puzzles with one piece missing, and two possible solutions.
Please click on the solution that correctly completes the puzzle. If you take longer than 17 s, the puzzle will
disappear, but the solutions will be shown until you choose one of them. You must choose a solution for every
puzzle, even if you feel that you are just guessing. An instruction screen before the first block of the test
phase informs the participant that, You are now starting the main phase of the experiment. You will be
shown a series of puzzles as before, but after every puzzle you will also be asked to rate your confidence that the
solution you chose was correct. The rating scale goes from 1 (very uncertain) to 4 (very certain). Take time to
consider your rating, and please be willing to use the full range of the scale.

Following the final block of test trials, participants see an information screen which states, Well done!
You have completed the main phase of the experiment. You will now be asked two questions about your
performance during the main phase only. Please take time to understand the question and consider your answer.
Try to answer as accurately as you can. Click here to continue. Participants then complete two global self-
estimates. The first is a relative estimate prompted by the text, Out of 100 Edinburgh University students
performing this task, how do you think you would rank, if 1 is poorest and 100 is best? The second is an
absolute estimate, prompted by the text: If a person was guessing randomly at this task, they would be right
about half the time. If random guessing is represented by zero on the scale, and perfect performance is 100, then
how do you think you did? Each prompt is shown above a horizontal scale from 0 to 100 (although the
scale for the relative response will not register any estimate lower than 1). When the participant clicks
on the scale, a line is shown to mark the estimate and a SUBMIT button appears below the scale. The
participant can revise their estimate by re-clicking the scale, or can click the SUBMIT button to confirm.

Finally, in a short verbal debrief, the experimenter asks the participant, first, what they think the
experiment is studying; and, second, if they have heard of the DKE. If the participant answers
positively to the second question, they are asked to give a brief description of this effect.

2.4 Dependent measures

2.4.1. Standard Dunning–Kruger effect measures

We first extracted standard measures of cognitive skill and errors of global self-estimation, to support a
typical analysis of the DKE (table 1a).

Cognitive skill is indexed by accuracy of matrix reasoning responses in the baseline phase. The raw per
cent correct was expected to range from 50 to 100 (i.e. from chance level to perfect performance). We
remapped this range to a 0–100 scale by subtracting the chance level (50) and multiplying by two.

Cognitive performance is indexed by accuracy of matrix reasoning responses in the test phase, similarly
remapped to a 0–100 scale between chance level and perfect performance.

Relative estimation error. For each participant, we converted the performance score into a percentile
rank and subtracted it from the relative self-estimate made at the end of the test phase, to give relative
estimation error. Positive values represent overestimation and negative values underestimation.

Absolute estimation error. For each participant, we subtracted the cognitive performance score from the
absolute self-estimate made at the end of the test phase, to give absolute estimation error. Positive values
represent overestimation and negative values underestimation.

2.4.2. Further cognitive and metacognitive measures

To support the psychophysical analysis of metacognition, we also calculated the following cognitive and
metacognitive measures from the test phase (table 1b).

Cognitive sensitivity (d0) for each participant was estimated from response data as follows:

d0 ¼ z(H)� z(FA):
Here, z() indicates the inverse of the standard cumulative normal distribution function, H refers to

type 1 hit rate and FA is the type 1 false alarm rate. This analysis was performed within the HMeta-d
toolbox for Matlab [20].8
8https://github.com/smfleming/HMeta-d

https://github.com/smfleming/HMeta-d
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Metacognitive sensitivity (meta-d0) was estimated within the same toolbox, via Bayesian estimation at
the participant level. As described by Fleming [20, pp. 2–7 and Appendix], the likelihood of observed
confidence rating data are modelled via a multinomial probability function,

L(ujdata) /
Y

x,i,j

Pu(conf ¼ xjstim ¼ i, res ¼ j)ndata(conf¼xjstim¼i,resp¼j):

Bayesian inference provides a posterior estimate of the parameter values for metacognitive sensitivity
(meta-d0), and has several advantages over traditional methods, including, but not limited to, lack of need
for edge correction, automatic precision for estimates relative to amount of data available, and
quantification of uncertainty around estimates (see [24]). For single-participant estimation we used
non-response conditional estimation via Markov chain Monte Carlo simulation executed in JAGS.9

Three chains of 10 000 samples each, with 1000 sample burn-in, were used for convergence. The
default prior on meta-d0 was a normal distribution with mean equal to the observed d0 computed from
the participant’s response data, and variance = 2.

Metacognitive efficiency, meta-d0/d0, was estimated within the same toolbox, as the mean of the ratio of
posterior samples of meta-d0 and d0.

Metacognitive bias was calculated as the (unweighted) mean confidence rating for correct and incorrect
responses. That is, mean confidence was calculated for correct responses, and for incorrect responses
separately, and metacognitive bias was the mean of these two values.

2.5. Participant exclusions and approach to outliers
Participants were excluded from the main analysis if they scored at floor or ceiling level on either the
baseline or test trials of the matrix reasoning task (i.e. raw accuracy less than or equal to 50%, or
equal to 100%) (four exclusions were made on this basis, see §3.1). If any participants at debrief were
able to describe, approximately or accurately, the DKE, then they were also excluded (no exclusions
resulted from this criterion). Regardless of these exclusions, all participants’ scores were included
when assigning a percentile rank to performance for the calculation of relative estimation error.

Our main analyses were based upon patterns of inter-correlation among key variables. Our general
approach to outliers was to treat them as informative data, and not to exclude them, but to focus on
robust measures of association, based on ranked data. However, we screened for univariate outliers on
the metacognitive efficiency variable, because this was based on a ratio measure (meta-d0/d0), which
may yield misleading extreme values, especially when d0 is low (see electronic supplementary
material, section S1.3). Here, we used a relatively conservative exclusion criterion, removing only
values more than two interquartile ranges below the first quartile, or above the third quartile.

As a robustness check, all analyses were re-run with no participant or outlier exclusions, and are
reported in electronic supplementary material, section S5.

2.6. Power and sample size
Our pilot study (electronic supplementary material, section S1) led us to anticipate that the strength of the
DKE, as measured by the ranked correlation between cognitive skill and estimation error, would be
around −0.66 for relative estimation error and −0.45 for absolute estimation error, with a weakest
expected strength of around −0.57 for relative estimation error and −0.38 for absolute estimation error
(see electronic supplementary material, section S1.4). To confirm the existence of the DKE for relative
and absolute estimation errors, we targeted the minimum expected effect size (−0.38), with a
conventional α of 0.05 adjusted to 0.025 (two-tailed), to account for the two inferential tests
performed. We would need a minimum sample size of 127 participants, to achieve a power for these
tests in excess of 0.99 [25,26]. However, we tested participants until we had 150 valid datasets (the
final valid sample size was in fact 151), to provide additional precision of estimation for other
relationships of theoretical interest.

Beyond the two critical tests of the DKE, our focus was on the estimation of these other relationships
of interest, and their relative contributions to the DKE. Precision of estimation depends on the empirical
sample (since we bootstrapped confidence intervals), but should vary inversely with correlation strength,
so that stronger correlations will be estimated more precisely than weaker correlations. For general
9http://mcmc-jags.sourceforge.net

http://mcmc-jags.sourceforge.net
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guidance, given a sample size of 150, we would expect a prediction interval (two-sided 95% confidence
interval) of around 0.31 for a correlation strength of 0.2, e.g. (0.04, 0.35), and around 0.12 for a correlation
strength of 0.8, e.g. (0.73, 0.85) [27].

2.7. Statistical analysis
Bivariate correlations were performed on ranked data (i.e. Spearman correlations), and reported with
bootstrapped 95% confidence intervals. The use of ranked data allowed us to make minimal
distributional assumptions, and to take a liberal approach to the retention of outliers (see §2.5). It was
also consistent with the common convention in this literature of indexing participant performance by
percentile rank (e.g. [2]). We base our main conclusions on interval estimates of ranked correlations
(we also report point estimates of Pearson correlation coefficients for comparison).

2.7.1. Reliability of cognitive performance

An initial condition for the DKE to emerge is that there should be a clear positive correlation between
cognitive skill and cognitive performance (i.e. between baseline and test phases). This is a logical
requirement for the concept of repeatable skill to be applied to the matrix reasoning task. Chierchia
et al. [23] reported a reliability of r = 0.71, across 218 participants, at an average retest delay of 35 days,
for parallel forms of the matrix reasoning task from which our stimuli were derived. Our pilot study,
in which we used rank-order correlations, suggested a median split-half reliability of ρ = 0.80, with
95% of 1000 split-half samples producing a correlation higher than 0.70 (electronic supplementary
material, section S1.3). We were thus confident that we would observe good reliability for this task
(ρ > 0.70). We did not have any minimum requirement for this correlation, but if it were much lower
than expected then this would help us to understand any shortfall in, or failure to replicate, the
critical DKE pattern.

2.7.2. Replication of the Dunning–Kruger effect: relationship between cognitive skill and estimation errors

We could not investigate the underlying basis of the DKE, unless the phenomenon itself was present.
This was tested via the ranked correlations between cognitive skill and absolute estimation error and
relative estimation error separately. This was the critical outcome-neutral condition for our study to be
able to address its aims: there must be a significant negative correlation between cognitive skill and relative
estimation error and/or between cognitive skill and absolute estimation error. We tested these two
correlations, using a two-tailed α of 0.025, as described in §2.6. Further analyses would be unable to
support any conclusions about the underlying causes of the DKE, for relative or absolute estimation
error, unless the DKE for that type of estimation error was significant.

2.7.3. Relationships between cognitive measures and metacognitive measures

We estimated the bivariate relationships between cognitive responses in the baseline and test phases, and
three measures of metacognitive insight collected in the test phase: metacognitive sensitivity,
metacognitive efficiency and metacognitive bias. This allowed us to more fully explore the proposal of
the dual-burden account that metacognitive insight is determined by cognitive ability for a task. We
initially estimated the relationships with cognitive sensitivity, as measured in the test phase.

We expected that metacognitive sensitivity would be positively related to cognitive sensitivity. This
expectation was motivated a priori from the metacognitive model we are using, in which cognitive
sensitivity constrains the information potentially available to metacognition (see §1.2). It was also
supported by our pilot data, which showed a strong positive relationship between these variables (r =
0.75, ρ = 0.69; electronic supplementary material, figure S5a). As noted in §1.3, this positive
relationship would be consistent with the dual-burden hypothesis, which proposes that metacognitive
processing depends on the same resources as cognitive performance. However, under a weak reading
of the hypothesis, differences in metacognitive sensitivity could just reflect underlying differences in
the cognitive information that metacognition can access, without implying differences in the quality of
metacognitive processing itself.

A stronger, more interesting version of the dual-burden hypothesis is also possible, in which the quality
of metacognitive processing would itself improve with task ability. This would predict a positive
relationship between cognitive sensitivity and metacognitive efficiency (our pilot data hints at such a



PERFORM

SKILL

M_SENSE M_EFFIC

EST_ERR

M_BIAS

Figure 2. A priori model for path analysis, with four indirect paths via which the relationship between task skill (SKILL) and
estimation error (EST_ERR) could arise: through task performance (PERFORM), metacognitive sensitivity (M_SENSE),
metacognitive efficiency (M_EFFIC) and metacognitive bias (M_BIAS). The total role of metacognitive factors in the DKE can be
estimated by the summed influence of the three metacognitive paths.
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relationship; electronic supplementary material, figure S5a). It should be noted that this would be
directionally opposite to the negative association that one might naturally expect when correlating one
measure (d0) with a fractional index in which it is the denominator (metacognitive efficiency =meta-d0/d0).
A positive correlation would thus be much more noteworthy than a negative one.

The relationship of cognitive sensitivity with metacognitive bias may further speak to the widespread
idea that poor performers are overconfident. If poor performers truly are overconfident, then they should
show a higher metacognitive bias than good performers, inducing a negative relationship with cognitive
sensitivity. A bias towards overconfidence among the poorest performers would be consistent with
popular characterizations of the DKE, although it is not a specific feature of the dual-burden account.

In addition to estimating metacognitive correlations with cognitive sensitivity in the test phase, we
also estimated correlations with cognitive skill, as assessed in the baseline phase. We expected these
correlations to be somewhat weaker; but some association between task skill and metacognition
would be necessary for metacognitive variables to substantively drive the relationship between task
skill and global estimation errors, as the dual-burden hypothesis proposes.
2.7.4. Path analysis of the Dunning–Kruger effect

The preceding analyses tested for the presence of the DKE, and examined a general assumption of the
dual-burden account, that participants with lower task skill have poorer metacognitive insight. But,
even if this assumption is supported, it does not necessarily follow that this plays an important role
in shaping the DKE. On the contrary, we previously found that less-skilled participants had poorer
metacognitive insight for simple movement and memory tasks, but a path analysis suggested that
these metacognitive differences had a negligible influence in driving the DKE pattern [11].

We adopted a similar path analysis here, with robust maximum likelihood estimation [28] to estimate
the relative importance of cognitive and metacognitive factors in driving the DKE for the matrix
reasoning task. Ranked data were used, and separate path analyses were performed for relative
estimation error and absolute estimation error.

The a priori model, depicted in figure 2, included four indirect paths via which the relationship
between task skill and estimation error (i.e. the DKE) could arise: through cognitive performance,
metacognitive sensitivity, metacognitive efficiency and metacognitive bias. We estimated each of these
paths, calculating 95% bootstrapped confidence intervals to set plausible ranges on their influence.
The total role of metacognitive factors was estimated by the summed influence of the metacognitive
paths. The relative strengths of performance and metacognitive paths provided a quantitative estimate
of their relative importance in driving the DKE for the present task.
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In the case that the confidence intervals on any path included zero, we explored dropping that path
and comparing the reduced model(s) against competitor models via the model comparison statistic
Akaike information criterion (AIC), seeking a reduced model which represented a better trade-off
between variance explained and parameters required. This model selection process was used to
determine whether the best model (lowest AIC) included both performance and metacognitive paths,
as the dual-burden account requires.
lishing.org/journal/rsos
R.Soc.Open
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3. Results
3.1. Sample size, participant exclusions and demographics
In total, 159 complete datasets were collected. One participant was found to have entered the experiment
twice (for payment) so her second set of data was removed. Three participants were ineligible for
inclusion because they had never been university students. From the remaining sample of 155
participants, four were excluded because of ceiling- or floor-level performance: two performed at floor
and one at ceiling in the baseline phase, and one performed at ceiling in the test phase. The four
participants excluded on performance criteria were removed after the calculation of performance
ranks for the baseline and test phases.

The final valid sample size was 151. By gender, 110 were female, 40 were male and one was non-
binary. The mean age was 24.4 years, s.d. 6.2 (median 22, range 18–49). One hundred and twenty-six
participants were current university students (120 Edinburgh University), and 25 were alumni (10
Edinburgh University).

3.2. Reliability of cognitive performance
An initial pre-condition for the DKE in our analysis is a positive correlation between cognitive skill and
cognitive performance (i.e. between baseline and test phases).

The Spearman correlation (ρ) was 0.75 (bootstrapped 95% CI (0.66, 0.81)), consistent with our pre-
registered expectation of ρ > 0.70. The Pearson correlation (r) was 0.73 (bootstrapped 95% CI (0.67,
0.80)). The matrix reasoning task thus has very good reliability, providing a sound basis for our
evaluation of the DKE in terms of the relation between cognitive skill in the baseline phase and
estimation error in the test phase.

The line of best fit between cognitive skill and performance is depicted by the solid line through the
filled symbols in figure 3b. This line of fit is above the dotted diagonal of identity, indicating a practice
benefit from baseline to test phases. When scores are expressed as percentile ranks, the practice effect is
compensated and the solid line of fit approximates the line of identity, showing the general preservation
of rank order (figure 3a).

3.3. Replication of the Dunning–Kruger effect: relationship between cognitive skill and
estimation errors

In figure 3a,b, respectively, the relative and absolute self-estimates of performance in the test phase are
indicated by crosses, and the dashed line indicates the relationship with cognitive skill (i.e. baseline
scores). Our operational definition of the DKE is as a negative relationship between cognitive skill (in
the baseline phase) and estimation error (in the test phase). The estimation error is represented by the
discrepancy between the solid (performance) and dashed (estimation) fit lines in figure 3a,b.

The estimation errors are plotted directly in figure 3c,d, showing the expected negative relationships
with cognitive skill. For relative estimation error, ρ was −0.57 (bootstrapped 95% CI (−0.66, −0.47)),
matching our weakest expected strength of −0.57 (see §2.6), and meeting our two-tailed criterion for
significance at the 0.025 level ( p = 1.6 × 10−14); r was −0.53 (bootstrapped 95% CI (−0.62, −0.43)). For
absolute estimation error, ρ was −0.43 (bootstrapped 95% CI (−0.55, −0.28)), close to our expected
strength of −0.45 (see §2.6), and meeting our two-tailed criterion for significance at the 0.025 level
( p = 5.0 × 10−8); r was −0.42 (bootstrapped 95% CI (−0.54, −0.27)).

The DKE relationship was thus replicated using the standard method of global self-estimation, more
strongly for relative than for absolute estimation errors. In both cases, the data satisfy the pre-registered
outcome-neutral criterion for our study to be able to address its aim of investigating the role of
metacognitive factors in the DKE.
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Figure 3. (a) Relationship between ranked cognitive skill (baseline phase) and ranked cognitive performance (test phase) is
represented by filled symbols and the solid line of fit, where the dotted diagonal represents a line of identity. The grey
crosses and dashed line of fit relate to the self-estimate of ranked performance. Estimation error is thus represented by the
distance between solid and dotted fit lines. (b) Equivalent plot for absolute scores (dots, solid line), and for absolute self-
estimates (crosses, dashed line). (c) DKE confirmed by a negative relationship between ranked cognitive skill and relative
estimation error. (d ) DKE confirmed by a negative relationship between cognitive skill and absolute estimation error.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:191727
12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ay
 2

02
5 
3.4. Relationships between cognitive measures and metacognitive measures
The next analyses chart the relationships between three measures of metacognition extracted from trial-
by-trial confidence ratings in the test phase, and first-order cognitive sensitivity for the same trials. We
chose cognitive sensitivity (d0) as the relevant measure of performance, because it is on an equivalent
scale to the measure of metacognitive sensitivity (meta-d0), but is otherwise closely equivalent to the
simple % correct measure of cognitive performance (ρ = 0.99, r = 0.96). The three relationships of
interest are plotted in figure 4a–c, and the corresponding correlations are tabulated on the right side
of table 2.

As expected, metacognitive sensitivity was strongly positively related to cognitive sensitivity. Poorer
performers have lower metacognitive sensitivity in discriminating their successes from their failures,
indicating that they have lower quality information available to support metacognitive confidence
judgements. The line of best fit approximated the line of unity, indicating that cognitive and
metacognitive judgements had access to the same information.
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metacognitive efficiency and (c) metacognitive bias. (d ) The relation between cognitive sensitivity and mean confidence for
correct responses (filled symbols, solid fit line) and incorrect responses (open symbols, dashed fit line).

Table 2. Correlations (bootstrapped 95% CI) between measures of metacognition in the test phase and cognitive skill (baseline
phase) and cognitive sensitivity (test phase). The relationships with cognitive sensitivity are those plotted in figure 4a–c.

cognitive skill (baseline phase) cognitive sensitivity (test phase)

Spearman (ρ) Pearson (r) Spearman (ρ) Pearson (r)

metacognitive

sensitivity

0.50 (0.37, 0.62) 0.50 (0.38, 0.62) 0.66 (0.50, 0.80) 0.67 (0.59, 0.76)

metacognitive efficiency −0.12 (−0.28, 0.05) −0.13 (−0.28, 0.03) −0.13 (−0.29, 0.05) −0.15 (−0.34, 0.06)
metacognitive bias 0.36 (0.21, 0.51) 0.42 (0.25, 0.55) 0.30 (0.13, 0.45) 0.36 (0.20, 0.51)
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For metacognitive efficiency, six high outliers were removed according to the pre-registered exclusion
criterion (greater than two interquartile ranges above the third quartile). As anticipated, these outliers all
occurred in the lower range of cognitive sensitivity, as a consequence of dividing meta-d0 by a d0 value
close to zero. For the remaining 145 participants, there was no support for the idea that the quality of
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metacognitive processing was worse among poor performers, once differences in the quality of
information available to metacognition were accounted for.

Metacognitive bias showed that, contrary to the popular characterization of poor performers as
overconfident, they were in fact less confident than their higher-performing counterparts. Figure 4d
unpacks the pattern of confidence according to whether the first-order response was correct or
incorrect. All people were unconfident to roughly the same degree (less than 2.5) when answering
problems incorrectly, but higher performers were much more confident when answering correctly.
When the poorest performers answered puzzles correctly, their average confidence rating was only
slightly higher than the highest performers when answering incorrectly. Far from being overconfident
in their self-assessments, poor performers were appropriately humble (see §4.3).

The above analyses focus on the relationship between metacognition and cognitive sensitivity
measured within the same series of trials (test phase). Given that the matrix reasoning task has good
test–retest reliability, a broadly similar set of relationships should hold between metacognitive
measures in the test phase and cognitive skill (as measured in the baseline block). The left side of
table 2 shows that this is true, albeit with a slightly weaker relationship for metacognitive sensitivity.
Some level of relation between task skill and metacognition is necessary for it to be possible that
metacognitive factors could contribute to the DKE, as the dual-burden account requires.

3.5. Path analysis of the Dunning–Kruger effect
To evaluate how well a dual-burden account explains the DKE pattern, we ran a series of path analyses,
separately for relative and absolute estimation errors. The a priori model, which is shown in figure 2, has
four paths that could mediate the overall negative relationship between task skill and estimation error:
through cognitive performance, metacognitive sensitivity, metacognitive efficiency and metacognitive
bias. The total role of metacognitive factors can be estimated by the summed influence of
metacognitive paths. Following our pre-registered plan (§2.7.4), we first fitted the full model, and then
tried dropping paths for which the confidence intervals included zero, to potentially identify a
reduced model that provides a better account of the data.

Table 3 summarizes the full and the reduced models for relative and absolute estimation error. Full
information of all models tested are available in electronic supplementary material, section S3; we focus
here on the total path strengths, and the overall quality of the model in terms of adjusted goodness of fit
and AIC. When interpreting the path strengths, it should be remembered that the DKE relationship itself
is a negative correlation between task skill and estimation error. Therefore, negatively signed paths tend
to promote the DKE relationship, and positively signed paths tend to counteract it.

For relative estimation error, the full model provided a good fit to the data (χ2 < 1, x2robust , 1) and
suggested that the overall DKE strength of −0.54 was due to a strong path via cognitive performance
(−0.69) tempered by an opposing influence of metacognitive factors (0.15). According to this full
model, only cognitive performance drives the DKE, while metacognition (in total) paradoxically tends
to counteract it. However, the path via metacognitive efficiency was not significant, and removing it
led to a reduced model with a better fit to the data, with significant paths for cognitive performance,
metacognitive sensitivity and metacognitive bias (albeit the latter was very weak). This reduced model
supported the same conclusion as the full model: performance factors drive the DKE (−0.68), while
metacognitive factors have a weaker, directionally opposite influence (0.14).

For absolute estimation error, the full model was a marginal fit to the data (x2ð1Þ ¼ 3:0, p= 0.08,
x2robustð1Þ ¼ 3:61, p= 0.06); the overall DKE relationship was weak (−0.29), and none of the component paths
were individually significant. The model reduction process led to the removal of the path due to
metacognitive efficiency and then metacognitive bias, leading to a better-fitting reduced model that
supported the same general conclusions as for the relative estimation error model above: performance factors
dominate the DKE (−0.45), with a weaker, opposing influence attributable to metacognitive sensitivity (0.15).

The reduced models in table 3 clearly contradict the dual-burden account, because while cognitive
performance acts to promote the DKE (as expected), the influence of metacognitive differences is
directionally opposite. These models are the outcome of a pre-registered model reduction process,
which did not allow for the dropping of paths that had a significant influence. However, all of the
models were dominated by the path through cognitive performance, with a weaker and less
consistent influence of metacognitive factors. If one is committed to a dual-burden account of the
DKE, then it makes sense to retain cognitive performance and at least one metacognitive path, but
since the observed patterns contradict the dual-burden account, the theoretical rationale to retain any
metacognitive path is weakened.



Table 3. Path coefficients and 95% confidence intervals for pre-registered (a priori) models and best fitting reduced models for
both relative and absolute estimation error. AIC, Akaike information criterion. See electronic supplementary material, section S3
for further model comparison statistics, and full information on all models tested. As a further robustness check, we also report
the same path analyses for scaled instead of ranked data in electronic supplementary material, section S4.

relative estimation error absolute estimation error

a priori model reduced model a priori model reduced model

total DKE −0.54��� (−0.65, −0.43) −0.54��� (−0.65, −0.43) −0.29��� (−0.42, −0.16) −0.30��� (−0.42, −0.18)

performance −0.69��� (−0.84, −0.55) −0.68��� (−0.79, −0.57) −0.17 (−0.39, 0.06) −0.45��� (−0.57, −0.32)

metacognition 0.15�� (0.05, 0.30) 0.14�� (0.08, 0.20) −0.12 (−0.32, 0.08) 0.15��� (0.07, 0.23)

metacog. sensitivity 0.11� (0.02, 0.19) 0.10��� (0.04, 0.15) −0.11 (−0.25, 0.04) 0.15��� (0.07, 0.23)

metacog. efficiency 0.00 (−0.02, 0.02) — −0.06 (−0.15, 0.03) —

metacog. bias 0.04� (0.01, 0.08) 0.04� (0.01, 0.08) 0.04 (−0.01, 0.09) —

adj. goodness of fit 0.97 0.97 0.87 0.93

AIC 6902 5633 7014 4291

�p < 0.05, ��p < 0.01, ���p < 0.001.
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Therefore, as an exploratory extension to our pre-registered analysis, we considered amaximally simple
model with only the path through cognitive performance included. These performance-only models fit
extremely well for both relative (x2ð1Þ , 1, x2robustð1Þ , 1, adjusted goodness of fit = 1.0, AIC = 2748) and
absolute estimation error (x2ð1Þ , 1:14, p = 0.29, x2robustð1Þ ¼ 1:23, p = 0.27, adjusted goodness of fit = 0.97,
AIC = 2858), with total path strengths of −0.57 (95% CI (−0.67, −0.47)) and −0.31 (95% CI (−0.43,
−0.20)), respectively. (The total path was of course equal to the only component path, via cognitive
performance.)

To compare these performance-only models with the reduced models in table 3, we used AIC, an index
of the quality of statistical models that takes account of model complexity [29]. The AIC increment between
models (ΔAIC) can be converted into a relative likelihood for the model with the lower AIC, using the
formula (exp(ΔAIC/2)). It is sometimes taken as a rule of thumb to prefer one model over another if
ΔAIC is 2 units or more (relative likelihood greater than or equal to 2.72). For relative and absolute
estimation error respectively, ΔIC compared with the corresponding reduced model was 2885 (= 5633–
2748) and 1433 (= 4291–2858). In both cases, the relative likelihood of the performance-only model over
the reduced model would be astronomically large (practically infinite). Although this was not part of
our pre-registered plan, the observed improvement in model quality was not marginal, but decisive. This
gives strong empirical grounds to prefer an account of the DKE driven by differences in performance
between skilled and unskilled people, with no role for metacognitive factors (at least as we have
measured them).
4. Discussion
4.1 Main outcomes
This Registered Report has examined the dual-burden account of the DKE for a test of matrix reasoning, the
kind of complex cognitive task forwhich theDKEwas first demonstrated [2]. The dual-burden account states
that the greater self-overestimation among less-skilled people arises because they perform poorly and lack
the metacognitive insight to realize it. We tested the assumptions of the dual-burden account and
examined the role of metacognitive factors in driving the DKE. Metacognitive sensitivity tracked
performance closely, so less information was exploited by the metacognitive judgements of poor
performers. Metacognitive efficiency was not associated with performance, so the quality of
metacognitive processing was not lower among poor performers. Metacognitive bias was positively
associated with performance, so poor performers were less confident—not more confident—than good
performers. A path analysis showed an overwhelming dominance of performance score in driving the
DKE, and the influence of metacognitive factors was weakly against the DKE, or negligible. The
assumptions of the dual-burden account may be partially satisfied, but metacognitive factors do not
meaningfully drive the DKE.
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4.2. Cognition and metacognition
The dual-burden account proposes that the DKE arises for tasks in which the judgement of one’s own level
of performance depends upon the same resources as the cognitive response itself. If an ideal observer has the
same information available for cognition and metacognition, their metacognitive sensitivity (meta-d0) to
discriminate correct from incorrect responses should be the same as their cognitive sensitivity (d0) for the
task [16]. We would then expect meta-d0 to track d0 closely, albeit with some noise in the measures, as
observed (figure 4a). This observed relationship is consistent with the dual-burden account, but it is
relatively uninteresting at a psychological level, because (in the absence of additional task feedback) the
information exploited by metacognition will always be limited by the information available for
cognition. If a person has insufficient information to know the correct answers, they will also have
insufficient information to know which of their answers are correct: ’It would be strange (based on the
ideal observer model) if worse performing subjects didn’t make noisier ratings’ [12, p. 7].

However, the original dual-burden account was stated not just in terms of shared information, but as
an overlap between the cognitive and metacognitive processes themselves: ’In essence, we argue that the
skills that engender competence in a particular domain are often the very same skills necessary to
evaluate competence in that domain…’ [2, p. 1121]. This stronger claim implies that the quality of
metacognitive processing should improve with task skill, predicting a positive relationship between
performance and metacognitive efficiency. We found no evidence for this predicted relationship
(figure 4b). The data support the idea that cognitive and metacognitive responses use common
information, but not that they have overlapping mechanisms.

So unskilled people are less able to distinguish their successes and failures in matrix reasoning.
However, the dual-burden story then makes a less secure inference, by casting the metacognitive
insensitivity of unskilled people as a lack of insight into their failings, which makes them
overconfident. This is questionable, because metacognitive insensitivity does not imply a specific
insensitivity to failure any more than it implies a specific insensitivity to success. To examine the idea
that unskilled people are overconfident we should consider the levels of confidence actually expressed.

4.3. Competence and confidence
Metacognitive sensitivity means that a person’s confidence tracks their likelihood of success, so that they
are more confident when responding correctly than when responding incorrectly. A simple measure of
mean confidence would be biased by the rate of correct responding, especially for people with high
metacognitive sensitivity. To adjust for the rate of correct responding, the measure of metacognitive
bias is calculated as the unweighted mean confidence across correct and incorrect responses (table 1).
Metacognitive bias was positively related to skill and performance (table 2 and figure 4c), so unskilled
performers were less and not more confident than their competent counterparts, even adjusting for
performance.

This positive relationship between competence and confidence is further amplified if we look at
unadjusted mean confidence. Figure 5a shows that the poorest performers are much less confident
than the highest performers on this metric. Nonetheless, a proponent of the DKE might still ask
whether the poor performers are as unconfident as they should be. The top performers score nearly
perfectly, so their mean confidence rating should ideally be close to the top of the scale, which it is.
The poorest performers score barely above chance, so their mean confidence rating should ideally be
close to the bottom of the scale, which it is not. Instead, they have a mean confidence rating of
around 2.3, just below the middle of the scale. If the dotted diagonal line represents the ideal
confidence rating, then the high performers look appropriately confident, and the low performers look
inappropriately overconfident, a pattern reminiscent of the classic DKE.

We would argue strongly against this interpretation of the confidence data. As figure 5b shows, the
overall mean confidence of the poorest performers (2.3) is at the same level as the mean confidence of a
top-performer responding incorrectly. Top performers have high metacognitive sensitivity, so their
ratings for incorrect responses reflect their confidence when they know they are uncertain. The fact
that this confidence level is closer to the middle of the scale than the bottom may just be quirk of
how people tend to use the scale; people may intuitively regard the lowest rating as high confidence
that the response is incorrect (a conceptual mirror to using the top of the scale for high confidence
that the response is correct). Empirically, the mean confidence of the poorest performer is equivalent
to that of a top-performer facing a problem that is too hard for them. So, not only are low performers
less confident than high performers, but they are less confident by an appropriate amount.
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Figure 5. (a) Mean confidence as a function of cognitive sensitivity (a psychophysical measure of task performance). Unlike metacognitive
bias (figure 4c), mean confidence is not adjusted for level of performance, so confidence is strongly related to performance. The dotted
diagonal is the theoretically ideal confidence rating across the range of performance. Relative to this ideal, poor performers may appear
to be overconfident. (b) The solid and dashed grey lines show mean confidence for correct and incorrect responses, respectively (as
in figure 4d ). The solid black line shows mean confidence (as in (a)), which is halfway between the grey lines for the poorest
performers (who get around 50% correct) and converges to the solid grey line for the top performers (who get around 100% correct).
The dotted horizontal line illustrates that the overall mean confidence of poor performers is equal to the mean confidence of top
performers when they are incorrect. Relative to this benchmark, poor performers’ overall level of confidence can be seen to be appropriate.
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4.4. What drives the Dunning–Kruger effect?
The next question is whether metacognitive factors play an important role in creating the DKE.
We replicated the DKE with negative correlations between task skill and self-estimation error, which
were stronger for relative self-estimates (ρ =−0.57, r =−0.53) than for absolute self-estimates (ρ =−0.43,
r =−0.42). We then used path analysis to quantify the respective roles of performance and metacognitive
factors in mediating these relationships (cf. [11]). The DKE was overwhelmingly driven by performance
scores, and the influence of metacognitive factors was weakly against the DKE, or negligible.

The lack of a driving role formetacognitive factors is not surprising, because it has long been argued that
the DKE is mainly due tomethodological artefacts (for a recent exchange, see [30–32]). As discussed in §1.1,
one such artefact is regression to the mean due to double-dipping [4–7,11,33]. This double-dipping occurs
when the same estimate of performance is used to index task skill and for the calculation of estimation
errors, but it can be avoided by using an independent block of trials to estimate task skill, as we did.
This will eliminate regression to the mean related to error in the measurement of performance,10 but it
will not neutralize other regressive biases, related to noise in the self-estimates.

People are generally rather poor at estimating their own performance, and their global self-estimates
tend to be weakly related to objective performance: in the present study, relative self-estimates correlated
with performance at r = 0.43, and absolute self-estimates correlated at r = 0.47. So self-estimates are
uncertain and they tend to regress away from the extremes of the scale towards intermediate values.
Given this noisy self-estimation, the main systematic influence on estimation error is the performance
score itself, which is subtracted from the self-estimate to calculate estimation error. Performance is also
positively related to task skill, so a negative relationship between task skill and estimation error (the
DKE) is created. We previously called this dynamic a ‘performance artefact’ [11], because it is driven
strongly by variations in the performance score, but it can also be understood as a form of regression
to the mean, in which uncertain self-estimates regress towards intermediate values [4].
10The DKE pattern would have been stronger if we had correlated estimation error with performance in the same (test) block (as has
often been done, following [2]). The correlations would then have been ρ =−0.78, r =−0.63 for relative estimation error, and ρ = −0.49,
r =−0.54 for absolute estimation error. This confirms that regression to the mean caused by double-dipping acts to inflate the DKE (see
§1.1)
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As Burson and colleagues [4] emphasized in their ‘noise-plus-bias’ account of the DKE, the
intermediate value to which self-estimates regress may be higher or lower than the true mean
performance, creating asymmetrical patterns of regression. If the mean self-estimate is higher than
mean performance, overestimation at the bottom end will be greater than underestimation at the top
end, which is the prototypical form of the DKE. The prototypical DKE is quite reliably obtained with
relative self-estimates, because—across a wide range of tasks—relative self-estimates tend to be
optimistic. This optimism is sometimes known as the better-than-average effect: people routinely rate
themselves on average above the 50th percentile, whereas the true mean is 50 by definition (see [34]
for a recent review and meta-analysis). In the present study, the mean relative self-estimate was 58.3,
so the better-than-average effect was present and the prototypical form of the DKE was obtained
(figure 3c). The mean absolute self-estimate (62.4) was also above the middle of the scale, but in this
case was lower than the mean performance (77.5), so the prototypical asymmetry was flipped, with
underestimation at the top end exceeding overestimation at the bottom end (figure 3d ). The relatively
low mean absolute estimate may have been because participants failed to take full account of practice,
which boosted scores in the test block (mean 77.5) relative to the baseline block (mean 55.8). Although
participants were prompted to estimate performance during the main phase only, their absolute ratings
may have been anchored by an impression of task difficulty from the baseline block.
Sci.9:191727
4.5. Conclusion
Our study provides partial support for the assumptions of the dual-burden account, in that people who
were less skilled at matrix reasoning also had lower metacognitive sensitivity, meaning that they were
less able to discriminate their correct and incorrect responses. This suggests that cognitive and
metacognitive processes have access to the same information. However, we found no evidence that
the metacognitive processes of unskilled people were any less good than those of others, just that they
had access to less good information. Nor were the poor performers overconfident; in fact, they were
less confident than high performers, just as they should be. Crucially, the observed metacognitive
differences do not drive the DKE. These data refute the dual-burden account, but they are compatible
with a noise-plus-bias account, in which uncertainty makes self-estimates regressive with respect to
performance, and general biases towards optimistic or pessimistic self-estimation make the regression
patterns asymmetrical [4].

This conclusion should not be surprising, because global self-estimates are not valid measures of
metacognition, and so are unlikely to support inferences about metacognition [12]. It is possible that
some factors related to task skill could influence self-estimates and explain a minor proportion of the
DKE [35], but the metacognitive variables that we have studied do not drive the DKE; if anything,
they slightly counteract it. The present findings are very similar to our earlier findings for movement
and memory tasks [11], suggesting that this conclusion is quite general. Indeed, the diverse range of
tasks for which the DKE can be demonstrated is itself suggestive of a very general phenomenon like
regression to the mean, rather than a specific hypothesis like the dual-burden account. We suspect
that the DKE pattern might arise for literally any task, cognitive or otherwise, in which it is hard for
people to know their score.

The present experiment confirms, for a matrix reasoning task, that unskilled people do lack insight, in
the limited sense that they are less able to discriminate between correct and incorrect responses. But this
does not mean that they are lacking metacognitive skill, or are overconfident, and the metacognitive
differences that exist do not underlie the DKE. These findings clearly refute the dual-burden account of
the DKE. This is important, because the dual-burden account has had wide cultural influence, being
used to push harmful stereotypes of poor performers as blind to their own faults, arrogant and
overconfident (stupid people are too stupid to know they are stupid). There may be some circumstances in
which low competence is systematically accompanied by high confidence, but these would not be typical
cases in which the task representation was weak or noisy, but special cases in which a person had a
mistaken task representation so that they were systematically following the wrong rule to give incorrect
answers with high confidence (e.g. [36]). Special cases aside, the DKE is an asymmetrical regression
artefact that tells us nothing much about metacognition. Our understanding of metacognition will
develop further and faster using more appropriate, theoretically grounded research methods [12].

Ethics. This study was conducted in accordance with the principles expressed in the Declaration of Helsinki, and
informed consent was obtained from all participants. The study was approved by the PPLS Research Ethics
Committee of the University of Edinburgh (approval numbers 422-1819/1; 422-1819/2).



royalsocietypublishing.org/journa
19

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ay
 2

02
5 
Data accessibility. Compiled and source LabVIEW code for the experimental tasks, and full raw and processed data and
analysis R code are archived at https://osf.io/u8kt4/. The original accepted Stage 1 Registered Report is archived at
https://osf.io/u8kt4/. Materials, data and code available at https://osf.io/u8kt4/.

The data are provided in electronic supplementary material [37].
Authors’ contributions. R.D.M.: conceptualization, data curation, formal analysis, methodology, resources, software,
supervision, visualization, writing—original draft, writing—review and editing; A.B.M.: conceptualization, formal
analysis, methodology, resources, supervision, writing—review and editing; Y.L.: data curation, investigation, project
administration, writing—review and editing; S.D.S.: conceptualization, methodology, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. No funding external to the University of Edinburgh supported this research.
Acknowledgements. We are grateful to Karim Rivera Lares for assistance with pilot data collection.
l/rsos
R.So
References
c.Open
Sci.9:191727
1. Dunning D. 2011 The Dunning–Kruger effect.
On being ignorant of one’s own ignorance. In
Advances in experimental social psychology (eds
JM Olson, MP Zanna), vol. 44, pp. 247–296.
Cambridge, MA: Academic Press.

2. Kruger J, Dunning D. 1999 Unskilled and
unaware of it: how difficulties in recognizing
one’s own incompetence lead to inflated self-
assessments. J. Pers. Soc. Psychol. 77,
1121–1134. (doi:10.1037/0022-3514.77.6.1121)

3. Ackerman PL, Beier ME, Bowen KR. 2002 What
we really know about our abilities and our
knowledge. Pers. Individ. Differ. 33, 587–605.
(doi:10.1016/S0191-8869(01)00174-X)

4. Burson KA, Larrick RP, Klayman J. 2006 Skilled
or unskilled, but still unaware of it: how
perceptions of difficulty drive miscalibration in
relative comparisons. J. Pers. Soc. Psychol. 90,
60–77. (doi:10.1037/0022-3514.90.1.60)

5. Feld J, Sauermann J, de Grip A. 2017 Estimating
the relationship between skill and
overconfidence. J. Behav. Exp. Econ. 68, 18–24.
(doi:10.1016/j.socec.2017.03.002)

6. Krueger J, Mueller RA. 2002 Unskilled, unaware,
or both? The better-than-average heuristic and
statistical regression predict errors in estimates
of own performance. J. Pers. Soc. Psychol.
82, 180–188. (doi:10.1037/0022-3514.82.
2.180)

7. Nuhfer E, Fleisher S, Cogan C, Wirth K, Gaze E.
2017 How random noise and a graphical
convention subverted behavioral scientists’
explanations of self-assessment data: numeracy
underlies better alternatives. Numeracy 10, 4.
(doi:10.5038/1936-4660.10.1.4)

8. Ehrlinger J, Johnson K, BannerM, Dunning D, Kruger
J. 2008 Why the unskilled are unaware: further
explorations of (absent) self-insight among the
incompetent. Organ. Behav. Hum. Decis. Process.
105, 98–121. (doi:10.1016/j.obhdp.2007.05.002)

9. Klayman J, Soll JB, González-Vallejo C, Barlas S.
1999 Overconfidence: it depends on how,
what, and whom you ask. Organ. Behav. Hum.
Decis. Process. 79, 216–247. (doi:10.1006/obhd.
1999.2847)

10. Kruger J, Dunning D. 2002 Unskilled and
unaware–but why? A reply to Krueger
and Mueller (2002). J. Pers. Soc.
Psychol. 82, 189–192. (doi:10.1037/0022-
3514.82.2.189)
11. McIntosh RD, Fowler EA, Lyu T, Della Sala S.
2019 Wise up: clarifying the role of
metacognition in the Dunning-Kruger effect.
J. Exp. Psychol. Gen. 148, 1882. (doi:10.1037/
xge0000579)

12. Fleming SM, Lau HC. 2014 How to
measure metacognition. Front. Hum.
Neurosci. 8, 1–9. (doi:10.3389/fnhum.
2014.00443)

13. Alicke MD, Govorun O. 2005 The better-than-
average effect. In The self in social judgement
(eds M. D. Alicke, D. Dunning, J. Krueger),
pp. 85–106. New York, NY: Psychology Press.

14. Heck PR, Krueger JI. 2015 Self-enhancement
diminished. J. Exp. Psychol. Gen. 144,
1003–1020. (doi:10.1037/xge0000105)

15. Kruger J. 1999 Lake Wobegon be gone! The
‘below-average effect’ and the egocentric nature
of comparative ability judgments. J. Pers. Soc.
Psychol. 77, 221–232. (doi:10.1037/0022-3514.
77.2.221)

16. Fleming SM, Daw ND. 2017 Self-evaluation of
decision-making: a general Bayesian framework
for metacognitive computation. Psychol. Rev.
124, 91–114. (doi:10.1037/rev0000045)

17. Maniscalco B, Lau H. 2012 Short
communication: a signal detection theoretic
approach for estimating metacognitive
sensitivity from confidence ratings. Conscious
Cogn. 21, 422–430. (doi:10.1016/j.concog.2011.
09.021)

18. Maniscalco B, Lau H. 2017 The signal processing
architecture underlying subjective reports of
sensory awareness. Neurosci. Conscious. 2016,
1–17.

19. Green DM, Swets JA. 1966 Signal detection
theory and psychophysics. New York: NY: Wiley.

20. Fleming SM, Daw ND. 2017 Self-evaluation of
decision-making: a general Bayesian framework
for metacognitive computation. Psychol. Rev.
124, 91–114. (doi:10.1037/rev0000045)

21. Moore DA, Healy PJ. 2008 The trouble with
overconfidence. Psychol. Rev. 115, 502–517.
(doi:10.1037/0033-295X.115.2.502)

22. Simons DJ. 2013 Unskilled and optimistic:
overconfident predictions despite calibrated
knowledge of relative skill. Psychon. Bull. Rev.
20, 601–607. (doi:10.3758/s13423-013-0379-2)

23. Chierchia G, Fuhrmann D, Knoll LJ, Pi-Sunyer BP,
Sakhardande AL, Blakemore S-J. 2019 The
matrix reasoning item bank (MaRs-IB): novel,
open-access abstract reasoning items for
adolescents and adults. R. Soc. Open Sci. 6,
190232. (doi:10.1098/rsos.190232)

24. Lee MD. 2008 BayesSDT: software for Bayesian
inference with signal detection theory. Behav.
Res. Methods 40, 450–456. (doi:10.3758/BRM.
40.2.450)

25. Faul F, Erdfelder E, Buchner A, Lang A-G. 2009
Statistical power analyses using G�Power 3.1:
tests for correlation and regression analyses.
Behav. Res. Methods 41, 1149–1160. (doi:10.
3758/BRM.41.4.1149)

26. Faul F, Erdfelder E, Lang A, Buchner A. 2007 G�

power 3: a flexible statistical power analysis
program for the social, behavioral, and
biomedical sciences. Behav. Res. Methods 39,
175–191. (doi:10.3758/BF03193146)

27. Bonett DG, Wright TA. 2000 Sample size
requirements for estimating Pearson, Kendall
and Spearman correlations. Psychometrika 65,
23–28. (doi:10.1007/BF02294183)

28. Rosseel Y. 2012 lavaan: an R package for
structural equation modeling. J. Stat. Softw. 48,
1–36. (doi:10.18637/jss.v048.i02)

29. Akaike H. 1974 A new look at the statistical
model identification. IEEE Trans. Automat.
Contr. 19, 716–723. (doi:10.1109/TAC.1974.
1100705)

30. Dunning D. 2022 The Dunning–Kruger
effect and its discontents. The Psychologist
35, 2–3.

31. McIntosh RD, Della Sala S. 2022 The persistent
irony of the Dunning–Kruger Effect. The
Psychologist 35, 30–34.

32. McIntosh RD, Della Sala S. 2022 Overconfident
defenders of the Dunning–Kruger effect. The
Psychologist 35, 5–7.

33. Nuhfer E, Cogan C, Fleisher S, Gaze E, Wirth K.
2016 Random number simulations reveal how
random noise affects the measurements and
graphical portrayals of self-assessed
competency. Numeracy 9, 4. (doi:10.5038/1936-
4660.9.1.4)

34. Zell E, Strickhouser J, Sedikides C,
Alicke M. 2020 The better-than-average
effect in comparative self-evaluation: a
comprehensive review and meta-analysis.
Psychol. Bull. 146, 118–149. (doi:10.1037/
bul0000218)

https://osf.io/u8kt4/
https://osf.io/u8kt4/
https://osf.io/u8kt4/
http://dx.doi.org/10.1037/0022-3514.77.6.1121
http://dx.doi.org/10.1016/S0191-8869(01)00174-X
http://dx.doi.org/10.1037/0022-3514.90.1.60
http://dx.doi.org/10.1016/j.socec.2017.03.002
http://dx.doi.org/10.1037/0022-3514.82.2.180
http://dx.doi.org/10.1037/0022-3514.82.2.180
https://doi.org/10.5038/1936-4660.10.1.4
http://dx.doi.org/10.1016/j.obhdp.2007.05.002
http://dx.doi.org/10.1006/obhd.1999.2847
http://dx.doi.org/10.1006/obhd.1999.2847
http://dx.doi.org/10.1037/0022-3514.82.2.189
http://dx.doi.org/10.1037/0022-3514.82.2.189
http://dx.doi.org/10.1037/xge0000579
http://dx.doi.org/10.1037/xge0000579
http://dx.doi.org/10.3389/fnhum.2014.00443
http://dx.doi.org/10.3389/fnhum.2014.00443
http://dx.doi.org/10.1037/xge0000105
http://dx.doi.org/10.1037/0022-3514.77.2.221
http://dx.doi.org/10.1037/0022-3514.77.2.221
https://doi.org/10.1037/rev0000045
https://doi.org/10.1016/j.concog.2011.09.021
https://doi.org/10.1016/j.concog.2011.09.021
https://doi.org/10.1037/rev0000045
http://dx.doi.org/10.1037/0033-295X.115.2.502
http://dx.doi.org/10.3758/s13423-013-0379-2
http://dx.doi.org/10.1098/rsos.190232
http://dx.doi.org/10.3758/BRM.40.2.450
http://dx.doi.org/10.3758/BRM.40.2.450
http://dx.doi.org/10.3758/BRM.41.4.1149
http://dx.doi.org/10.3758/BRM.41.4.1149
http://dx.doi.org/10.3758/BF03193146
http://dx.doi.org/10.1007/BF02294183
http://dx.doi.org/10.18637/jss.v048.i02
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.5038/1936-4660.9.1.4
https://doi.org/10.5038/1936-4660.9.1.4
https://doi.org/10.1037/bul0000218
https://doi.org/10.1037/bul0000218


royalsoci
20

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 M

ay
 2

02
5 
35. Jansen RA, Rafferty AN, Griffiths TL. 2021 A
rational model of the Dunning–Kruger effect
supports insensitivity to evidence in low
performers. Nat. Hum. Behav. 5, 756–763.
(doi:10.1038/s41562-021-01057-0)
36. Williams EF, Dunning D, Kruger J. 2013 The
hobgoblin of consistency: algorithmic judgment
strategies underlie inflated self-assessments of
performance. J. Pers. Soc. Psychol. 104,
976–994. (doi:10.1037/a0032416)
37. McIntosh RD, Moore AB, Liu Y, Della Sala S.
2022 Skill and self-knowledge: empirical
refutation of the dual-burden account of the
Dunning–Kruger effect. Figshare. (doi:10.6084/
m9.figshare.c.6316836)
 etypu
blishing.org/journal/rsos

R.Soc.Open
Sci.9:191727

https://doi.org/10.1038/s41562-021-01057-0
https://doi.org/10.1037/a0032416
http://dx.doi.org/10.6084/m9.figshare.c.6316836
http://dx.doi.org/10.6084/m9.figshare.c.6316836

	Skill and self-knowledge: empirical refutation of the dual-burden account of the Dunning–Kruger effect
	Introduction
	Skill and self-knowledge
	Measuring metacognition
	Metacognition in the Dunning–Kruger effect
	The present study

	Methods
	Participants
	Stimuli
	Procedure
	Dependent measures
	Standard Dunning–Kruger effect measures
	Further cognitive and metacognitive measures

	Participant exclusions and approach to outliers
	Power and sample size
	Statistical analysis
	Reliability of cognitive performance
	Replication of the Dunning–Kruger effect: relationship between cognitive skill and estimation errors
	Relationships between cognitive measures and metacognitive measures
	Path analysis of the Dunning–Kruger effect


	Results
	Sample size, participant exclusions and demographics
	Reliability of cognitive performance
	Replication of the Dunning–Kruger effect: relationship between cognitive skill and estimation errors
	Relationships between cognitive measures and metacognitive measures
	Path analysis of the Dunning–Kruger effect

	Discussion
	Main outcomes
	Cognition and metacognition
	Competence and confidence
	What drives the Dunning–Kruger effect?
	Conclusion
	Ethics
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding

	Acknowledgements
	References


